Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.047
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10624, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724555

RESUMO

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).


Assuntos
Evolução Biológica , Peixes , Fósseis , Artéria Pulmonar , Animais , Artéria Pulmonar/anatomia & histologia , Peixes/anatomia & histologia , Vertebrados/anatomia & histologia , Pulmão/irrigação sanguínea , Filogenia
2.
Protein J ; 43(2): 225-242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616227

RESUMO

Natural G-protein-coupled receptors (GPCRs) rarely have an additional transmembrane (TM) helix, such as an artificial TM-linker that can unite two class A GPCRs in tandem as a single-polypeptide chain (sc). Here, we report that three groups of TM-linkers exist in the intervening regions of natural GPCR fusions from vertebrates: (1) the original consensus (i.e., consensus 1) and consensus 2~4 (related to GPCR itself or its receptor-interacting proteins); (2) the consensus but GPCR-unrelated ones, 1~7; and (3) the inability to apply 1/2 that show no similarity to any other proteins. In silico analyses indicated that all natural GPCR fusions from Amphibia lack a TM-linker, and reptiles have no GPCR fusions; moreover, in either the GPCR-GPCR fusion or fusion protein of (GPCR monomer) and non-GPCR proteins from vertebrates, excluding tetrapods, i.e., so-called fishes, TM-linkers differ from previously reported mammalian and are avian sequences and are classified as Groups 2 and 3. Thus, previously reported TM-linkers were arranged: Consensus 1 is [T(I/A/P)(A/S)-(L/N)(I/W/L)(I/A/V)GL(L/G)(A/T)(S/L/G)(I/L)] first identified in invertebrate sea anemone Exaiptasia diaphana (LOC110241027) and (330-SPSFLCI-L-SLL-340) identified in a tropical bird Opisthocomus hoazin protein LOC104327099 (XP_009930279.1); GPCR-related consensus 2~4 are, respectively, (371-prlilyavfc fgtatg-386) in the desert woodrat Neotoma lepida A6R68_19462 (OBS78147.1), (363-lsipfcll yiaallgnfi llfvi-385) in Gavia stellate (red-throated loon) LOC104264164 (XP_009819412.1), and (479-ti vvvymivcvi glvgnflvmy viir-504) in a snailfish GPCR (TNN80062.1); In Mammals Neotoma lepida, Aves Erythrura gouldiae, and fishes protein (respectively, OBS83645.1, RLW13346.1 and KPP79779.1), the TM-linkers are Group 2. Here, we categorized, for the first time, natural TM-linkers as rare evolutionary events among all vertebrates.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/genética , Vertebrados/classificação , Simulação por Computador , Sequência de Aminoácidos , Humanos
3.
Immunity ; 57(4): 613-631, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599162

RESUMO

While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Invertebrados , Imunidade Adaptativa , Vertebrados
4.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553567

RESUMO

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Estações do Ano , Reprodução/fisiologia , Vertebrados/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Mamíferos , Tireotropina/metabolismo
5.
Gen Comp Endocrinol ; 350: 114477, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387532

RESUMO

Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.


Assuntos
Gonadotropinas , Hormônios Hipotalâmicos , Animais , Gonadotropinas/metabolismo , Vertebrados/metabolismo , Peptídeos/metabolismo , Hipotálamo/metabolismo , Reprodução/fisiologia , Peixes/metabolismo , Mamíferos/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
6.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336291

RESUMO

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Assuntos
Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Vertebrados , Animais , Humanos , Camundongos , Ratos , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Especificidade da Espécie , Vertebrados/genética , Galinhas/genética
7.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311092

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Assuntos
Hepcidinas , Lampreias , Animais , Lampreias/genética , Lampreias/metabolismo , Hepcidinas/genética , Sequência de Aminoácidos , Cisteína , Proteínas de Peixes/química , Vertebrados/metabolismo , Peptídeos/genética , Antibacterianos/farmacologia , Filogenia
8.
Nature ; 627(8005): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262590

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Assuntos
Evolução Molecular , Feiticeiras (Peixe) , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/embriologia , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética , Sintenia , Poliploidia , Linhagem da Célula
9.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216617

RESUMO

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Assuntos
Feiticeiras (Peixe) , Animais , Filogenia , Feiticeiras (Peixe)/genética , Duplicação Gênica , Vertebrados/genética , Genoma , Lampreias/genética
10.
J Immunol ; 212(4): 645-662, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180157

RESUMO

Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.


Assuntos
Macrófagos , Opsonização , Animais , Macrófagos/metabolismo , Ativação do Complemento , Rim/metabolismo , Vertebrados , Colectinas/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
11.
J Exp Zool A Ecol Integr Physiol ; 341(3): 219-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38084833

RESUMO

This review article includes a literature review of synteny analysis of the amphibian gonadotropin-releasing hormone (GnRH) genes, the distribution of GnRH 1 and GnRH2 neurons in the central nervous system of amphibians, the function and regulation of hypophysiotropic GnRH1, and the function of GnRH1 in amphibian reproductive behaviors. It is generally accepted that GnRH is the key regulator of the hypothalamic-pituitary-gonadal axis. Three independent GnRH genes, GnRH1, GnRH2, and GnRH3, have been identified in vertebrates. Previous genome synteny analyses suggest that there are likely just two genes, gnrh1 and gnrh2, in amphibians. In three groups of amphibians: Anura, Urodela, and Gymnophiona, the distributions of GnRH1 and GnRH2 neurons in the central nervous system have also been previously reported. Moreover, these neuronal networks were determined to be structurally independent in all species examined. The somata of GnRH1 neurons are located in the terminal nerve, medial septum (MS), and preoptic area (POA), and some GnRH1 neurons in the MS and POA project into the median eminence. In contrast, the somata of GnRH2 neurons are located in the midbrain tegmentum. In amphibians, GnRH1 neurons originate from the embryonic olfactory placode, while GnRH2 neurons originate from the midbrain. The characterization and feedback regulation mechanisms of hypophysiotropic GnRH1 neurons in amphibians, the involvement of GnRH1 in amphibian reproductive behavior, and its possible mechanism of action should be elucidated in future.


Assuntos
Hormônio Liberador de Gonadotropina , Reprodução , Animais , Hormônio Liberador de Gonadotropina/genética , Reprodução/fisiologia , Vertebrados , Anfíbios
12.
Nucleic Acids Res ; 52(D1): D52-D60, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37739414

RESUMO

Recent studies have demonstrated the important regulatory role of circRNAs, but an in-depth understanding of the comprehensive landscape of circRNAs across various species still remains unexplored. The current circRNA databases are often species-restricted or based on outdated datasets. To address this challenge, we have developed the circAtlas 3.0 database, which contains a rich collection of 2674 circRNA sequencing datasets, curated to delineate the landscape of circRNAs within 33 distinct tissues spanning 10 vertebrate species. Notably, circAtlas 3.0 represents a substantial advancement over its precursor, circAtlas 2.0, with the number of cataloged circRNAs escalating from 1 007 087 to 3 179 560, with 2 527 528 of them being reconstructed into full-length isoforms. circAtlas 3.0 also introduces several notable enhancements, including: (i) integration of both Illumina and Nanopore sequencing datasets to detect circRNAs of extended lengths; (ii) employment of a standardized nomenclature scheme for circRNAs, providing information of the host gene and full-length circular exons; (iii) inclusion of clinical cancer samples to explore the biological function of circRNAs within the context of cancer and (iv) links to other useful resources to enable user-friendly analysis of target circRNAs. The updated circAtlas 3.0 provides an important platform for exploring the evolution and biological implications of vertebrate circRNAs, and is freely available at http://circatlas.biols.ac.cn and https://ngdc.cncb.ac.cn/circatlas.


Assuntos
Bases de Dados de Ácidos Nucleicos , Neoplasias , RNA Circular , Animais , Humanos , Neoplasias/genética , Vertebrados/genética
13.
Dev Biol ; 506: 20-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052294

RESUMO

Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.


Assuntos
Ectoderma , Crânio , Animais , Humanos , Vertebrados , Diferenciação Celular , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento
14.
J Mol Evol ; 92(1): 21-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158403

RESUMO

The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.


Assuntos
Neuroblastoma , Sinais de Localização Nuclear , Animais , Humanos , Filogenia , Sinais de Localização Nuclear/genética , Vertebrados/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Evolução Molecular
15.
Gen Comp Endocrinol ; 347: 114436, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141859

RESUMO

Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERß). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.


Assuntos
Evolução Molecular , Receptores de Esteroides , Animais , Filogenia , Peixes/genética , Vertebrados , Receptores de Esteroides/genética , Duplicação Gênica
16.
J Biol Chem ; 300(1): 105577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110035

RESUMO

Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.


Assuntos
Formigas , Mordeduras e Picadas , Dor , Peptídeos , Toxinas Biológicas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Animais , Formigas/patogenicidade , Formigas/fisiologia , Mordeduras e Picadas/complicações , Dor/induzido quimicamente , Dor/complicações , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Toxinas Biológicas/toxicidade , Vertebrados , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo
17.
PLoS Genet ; 19(12): e1011077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38113249

RESUMO

Drosophila hemocytes serve as the primary defense system against harmful threats, allowing the animals to thrive. Hemocytes are often compared to vertebrate innate immune system cells due to the observed functional similarities between the two. However, the similarities have primarily been established based on a limited number of genes and their functional homologies. Thus, a systematic analysis using transcriptomic data could offer novel insights into Drosophila hemocyte function and provide new perspectives on the evolution of the immune system. Here, we performed cross-species comparative analyses using single-cell RNA sequencing data from Drosophila and vertebrate immune cells. We found several conserved markers for the cluster of differentiation (CD) genes in Drosophila hemocytes and validated the role of CG8501 (CD59) in phagocytosis by plasmatocytes, which function much like macrophages in vertebrates. By comparing whole transcriptome profiles in both supervised and unsupervised analyses, we showed that Drosophila hemocytes are largely homologous to vertebrate myeloid cells, especially plasmatocytes to monocytes/macrophages and prohemocyte 1 (PH1) to hematopoietic stem cells. Furthermore, a small subset of prohemocytes with hematopoietic potential displayed homology with hematopoietic progenitor populations in vertebrates. Overall, our results provide a deeper understanding of molecular conservation in the Drosophila immune system.


Assuntos
Drosophila , Hemócitos , Animais , Drosophila/genética , Transcriptoma/genética , Vertebrados/genética , Perfilação da Expressão Gênica , Células Mieloides , Drosophila melanogaster/genética , Larva/genética
18.
Sci Immunol ; 8(90): eadf1627, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37910630

RESUMO

Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)-specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non-M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA-associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igµ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.


Assuntos
Linfócitos B , Centro Germinativo , Animais , Imunoglobulina M , Antígenos , Vertebrados , Mamíferos
19.
Front Endocrinol (Lausanne) ; 14: 1260600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842312

RESUMO

Invertebrates lack hypothalamic-pituitary-gonadal axis, and have acquired species-specific regulatory systems for ovarian follicle development. Ascidians are marine invertebrates that are the phylogenetically closest living relatives to vertebrates, and we have thus far substantiated the molecular mechanisms underlying neuropeptidergic follicle development of the cosmopolitan species, Ciona intestinalis Type A. However, no ovarian factor has so far been identified in Ciona. In the present study, we identified a novel Ciona-specific peptide, termed PEP51, in the ovary. Immunohistochemical analysis demonstrated the specific expression of PEP51 in oocyte-associated accessory cells, test cells, of post-vitellogenic (stage III) follicles. Immunoelectron microscopy revealed that PEP51 was localized in the cytosol of test cells in early stage III follicles, which lack secretory granules. These results indicate that PEP51 acts as an intracellular factor within test cells rather than as a secretory peptide. Confocal laser microscopy verified that activation of caspase-3/7, the canonical apoptosis marker, was detected in most PEP51-positive test cells of early stage III. This colocalization of PEP51 and the apoptosis marker was consistent with immunoelectron microscopy observations demonstrating that a few normal (PEP51-negative) test cells reside in the aggregates of PEP51-positive apoptotic test cells of early stage III follicles. Furthermore, transfection of the PEP51 gene into COS-7 cells and HEK293MSR cells resulted in activation of caspase-3/7, providing evidence that PEP51 induces apoptotic signaling. Collectively, these results showed the existence of species-specific ovarian peptide-driven cell metabolism in Ciona follicle development. Consistent with the phylogenetic position of Ciona as the closest sister group of vertebrates, the present study sheds new light on the molecular and functional diversity of the regulatory systems of follicle development in the Chordata.


Assuntos
Ciona intestinalis , Animais , Feminino , Ciona intestinalis/genética , Filogenia , Caspase 3/genética , Aminoácidos/metabolismo , Peptídeos/metabolismo , Folículo Ovariano , Vertebrados
20.
Proc Natl Acad Sci U S A ; 120(43): e2307203120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844219

RESUMO

The TGF-beta signals Vg1 (Dvr1/Gdf3) and Nodal form heterodimers to induce vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal, but the mechanisms underlying Vg1 biogenesis are largely elusive. Here, we clarify the mechanisms underlying Vg1 retention, processing, secretion, and signaling and introduce a Synthetic Processing (SynPro) system that enables the programmed cleavage of ER-resident and extracellular proteins. First, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. These observations suggest two mechanisms for rapid mesendoderm induction: Chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly. These results establish SynPro as an in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active TGF-beta heterodimers.


Assuntos
Padronização Corporal , Fator de Crescimento Transformador beta , Animais , Fator de Crescimento Transformador beta/metabolismo , Vertebrados/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA